skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Eufemio, Rosemary J"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract. From extracellular freezing to cloud glaciation, the crystallization of water is ubiquitous and shapes life as we know it. Efficient biological ice nucleators (INs) are crucial for organism survival in cold environments and, when aerosolized, serve as a significant source of atmospheric ice nuclei. Several lichen species have been identified as potent INs capable of inducing freezing at high subzero temperatures. Despite their importance, the abundance and diversity of lichen INs are still not well understood. Here, we investigate ice nucleation activity in the cyanolichen-forming genus Peltigera from across a range of ecosystems in the Arctic, the northwestern United States, and Central and South America. We find strong IN activity in all tested Peltigera species, with ice nucleation temperatures above −12 °C and 35 % of the samples initiating freezing at temperatures at or above −6.2 °C. The Peltigera INs in aqueous extract appear to be resistant to freeze–thaw cycles, suggesting that they can survive dispersal through the atmosphere and thereby potentially influence precipitation patterns. An axenic fungal culture termed L01-tf-B03, from the lichen Peltigera britannica JNU22, displays an ice nucleation temperature of −5.6 °C at 1 mg mL−1 and retains remarkably high IN activity at concentrations as low as 0.1 ng mL−1. Our analysis suggests that the INs released from this fungus in culture are 1000 times more potent than the most active bacterial INs from Pseudomonas syringae. The global distribution of Peltigera lichens, in combination with the IN activity, emphasizes their potential to act as powerful ice-nucleating agents in the atmosphere. 
    more » « less
    Free, publicly-accessible full text available January 1, 2026
  2. Abstract. Forty years ago, lichens were identified as extraordinary biological icenucleators (INs) that enable ice formation at temperatures close to0 ∘C. By employing INs, lichens thrive in freezing environmentsthat surpass the physiological limits of other vegetation, thus making themthe majority of vegetative biomass in northern ecosystems. Aerosolizedlichen INs might further impact cloud glaciation and have the potential toalter atmospheric processes in a warming Arctic. Despite the ecologicalimportance and formidable ice nucleation activities, the abundance,diversity, sources, and role of ice nucleation in lichens remain poorlyunderstood. Here, we investigate the ice nucleation capabilities of lichenscollected from various ecosystems across Alaska. We find ice nucleatingactivity in lichen to be widespread, particularly in the coastal rainforestof southeast Alaska. Across 29 investigated lichen, all species show icenucleation temperatures above −15 ∘C, and ∼30 %initiate freezing at temperatures above −6 ∘C. Concentrationseries of lichen ice nucleation assays in combination with statisticalanalysis reveal that the lichens contain two subpopulations of INs, similarto previous observations in bacteria. However, unlike the bacterial INs, thelichen INs appear as independent subpopulations resistant to freeze–thawcycles and against temperature treatment. The ubiquity and high stability ofthe lichen INs suggest that they can impact local atmospheric processes andthat ice nucleation activity is an essential trait for their survival incold environments. 
    more » « less